
Eur. Phys. J. D 5, 257–265 (1999) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. We analyze the implementation of the time-reversal (TR) transformation in the algebraic ap-
proach to tetrahedral local molecules through the chain of groups U(5) ⊃ U(4) ⊃ K(4) = A(4) ∧ S(4) ⊃
S(4) ≈ Td. We determine the general form of the TR operation using a purely algebraic realization, based
exclusively on the requirement that the irreducible representations must not be changed under the time
inversion symmetry. As a result we can determine the TR behavior of purely algebraic operators.

PACS. 03.65.Fd Algebraic methods – 31.15.Hz Group theory

1 Introduction

Dynamical noninvariance groups in Quantum Mechanics
provide a tool that has found a wide range of applications
in nuclear and molecular systems [1–5].

Since under the TR operation, the Hermitian oper-
ators r and p become r and −p, developments based
on an expansion in powers of these canonical variables
present the advantage that we know exactly the behavior
of the usual quantum operators (Hamiltonian, transition
operators, ...) with respect to the operations of Hermi-
tian conjugation and time inversion. Moreover, if the stud-
ied system exhibits some geometrical invariance under the
symmetry operations of a group, then the connection of
the quantities r and p to the different elements of the
system (bonds, nuclei, atoms, ...), enables the quantum
operators in the symmetry group of this system to be
easily symmetrized.

In the algebraic approach developed in [1–7], the ba-
sic operators are introduced abstractly, and they do not
have a direct interpretation in terms of r and p. Their TR
properties must therefore be established by other intrinsic
arguments.

In what follows, we shall restrict our study to tetrahe-
dral molecular systems XY4. It has been previously shown
that U(5) is an appropriate dynamic noninvariance group
[6], the degeneracy group of this 4-equivalent oscillators
system is U(4). For a molecular system exhibiting a local
mode spectrum, such as SiH4, SnH4, GeH4, ..., the group
K(4) = A(4) ∧ S(4) gives a good description of the levels
[7]. Finally S(4) ≈ Td constitutes the symmetry group of
these four equivalent bonds.

From [1,13], we know that all the physical states as-
sociated with the vibrational stretching modes of tetra-
hedral molecules can be obtained within the irreducible
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representation (irrep) [N, 0, 0, 0, 0] of U(5) as symmetrized
Gel’fand-Zetlin’s kets [7,12] in the group chain

U(5) ⊃ U(4) ⊃ K(4) ⊃ S(4) ≈ Td (1)

and are obtained by means of [7]

|n1n2n3n4n5, rCσ〉 = P (C)
σ |n1n2n3n4n5〉 (2)

=
1

√
n1!n2!n3!n4!n5!

×P (C)
σ (b+n1

1 b+n2
2 b+n3

3 b+n4
4 b+n5

5 |00000〉) (3)

where

P (C)
σ =

[C]

4!

∑
R∈Td≈S(4)

D(C)∗

σσ (R)OR (4)

denotes the projection operator. The letter r, in rela-
tion (2) distinguishes the different irreps C of Td group
whose multiplicity is greater than 1. K(4) provides labels
which identify the different local states.

From all the possible realizations of the U(5) genera-
tors [14,15], one of the most practical consists in writing
them as Bosonic operators:

Eij = b†ibj i, j = 1, ..., 5 (5)

with the usual Bose relations [bi, bj ] = [b†i , b†j ] = 0 and

[bi, b†j ] = δij .
The generators transform under the Hermitian conju-

gation as:

(Eij)
† = Eji i, j = 1, ..., 5. (6)
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The Hamiltonian of this four-bond system can be written
as an expansion in power series of the generators:

H = α(0)1I +
5∑

i,j=1

α
(1)
i,j Eij +

5∑
i,j,k,l=1

α
(2)
i,j,k,lEijEkl + ...

(7)

Moreover, if we attribute the operators bi and b†i (i =
1, ..., 4) as being annihilation and creation of one quantum
of energy associated with the ith bond in the molecule [6],
we can easily symmetrize the operators with respect to the
symmetry group of the system [7]. This allows us to build
a totally symmetric Hamiltonian with respect to S(4).

However, the generators of U(5) are not directly ex-
pressed as functions of the canonical variables position
and momentum. Following the works of Zhang et al.
[8,9] or Perelomov [10,11], one can define coherent states
associated with U(5)/U(4) ⊗ U(1) isomorphic to CP (4).
A phase space representation of the generators of U(5) is
then obtained by evaluating the mean value of the genera-
tors in this coherent state basis. However this construction
depends on the particular choice of the canonical coordi-
nates of U(5)/U(4) ⊗ U(1) and their TR properties are
not determined. They are obtained by analyzing the semi-
classical limit of the model.

In the present approach the TR properties can be de-
duced without invoking a semi-classical limit, by taking
into account the chain of groups (1), which gives a phys-
ical interpretation to the generators relating them to the
bonds. We have thus to establish the representation of
the TR transformation for the operators of an algebraic
Hamiltonian by arguments that are not based on position
and momentum operators. We will use properties based
exclusively on the symmetries of the system; in particular
the fact that the space of states associated with the irrep
[N, 0, 0, 0, 0] of U(5) is stable under time inversion.

We shall assume that the irreps in the chain (1) give
good quantum numbers for local tetrahedral molecules as
shown in previous papers [7,16].

The main steps involved in this paper are:

- representation of the TR transformation on the algebra
of the Boson operators as linear, antiunitary transfor-
mations;

- invariance of the operator N =
5∑
i=1

Ni under the asso-

ciated transformations;
- twice the TR operation applied on the Boson operators

leads to the initial operators;
- TR operation commutes with the Td group transfor-

mations;
- invariance under the TR symmetry of the algebraic

invariant operators of U(4) and K(4).

As a result, these conditions allow us to determine the
TR behavior of purely algebraic operators. For the Bo-
son operators, we obtain the following general form of the

transformation:

˜
b†k = eiωb†k, b̃k = e−iωbk

˜
b†5 = eiω

′′
b†5, b̃5 = e−iω

′′
b5 (k = 1, ..., 4).

where ω and ω′′ are two free parameters.
From which we deduce the action of the TR operation

for the U(5) generators:

b̃†ibj = b†ibj , b̃†5b5 = b†5b5

b̃†kb5 = ei(ω−ω
′′)b†kb5, b̃†5bk = ei(ω

′′−ω)b†5bk

(i, j, k = 1, ..., 4).

1.1 Properties of the TR operation: Discussion
of simple cases

Before we derive the transformation of the U(5) genera-
tors, we want to illustrate using a simple case that such a
transformation is not trivial. First, we recall some proper-
ties of TR operation. For further details, we refer to [17].

The TR transformation is an antiunitary operation
which can be written as:

θ = UK (8)

where U is unitary and KΨ = Ψ∗ is the transition to the
complex conjugate. It verifies K2 = 1I or K = K−1.

Furthermore θ2 = ±1I , the lower sign applies in the
case of a Fermionic system. For the problem dealt with
here, we need only to keep the case:

θ2 = 1I or θ = θ−1. (9)

The TR transformation acts on the Boson operators as

b†i →
˜
b†i = θb†iθ

−1.
We immediately deduce the transformation of a

generator:

b̃†ibj = θb†ibjθ
−1

= θb†iθ
−1θbjθ

−1

=
˜
b†i b̃j

and

(
˜
b†i )
† = (θ−1)†biθ

† = θbiθ
−1 = b̃i (10)

(i.e. one can deduce the action of the TR operation on the

bi knowing the action on the b†i ).
Finally, from [17], we recall that the operation of time

inversion commutes with all symmetry operations of the
rotation group O(3):

[θ,PR] = 0 ∀R ∈ O(3). (11)

This relation holds necessarily for Td as a subgroup
of O(3).
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We start by discussing a simple case. Let us choose the
following chain of groups:

U(3) ⊃ U(2). (12)

Among the generators of U(3), we separate those that
generate the subgroup U(2):

b†1b3 b†1b1 = N1

b†3b1 b†1b2

b†2b3 b†2b1

b†3b2 b†2b2 = N2︸ ︷︷ ︸
b†3b3 = N3 U(2)︸ ︷︷ ︸

U(3)

if we assume the physical system to be well-described by
the chain (12), then the Hamiltonian can be written in a
first approximation as a sum of the Casimir operators Cj
of (12). Up to the second order in the generators, it reads:

H = α1 C1(U(3)) + α2 C2(U(3))

+ β1 C1(U(2)) + β2 C2(U(2)) (13)

= α1N + α2N
2 + β1n + β2n

2

where we have denoted N = N1 + N2 + N3 and n =
N1 + N2. As

(b†ibj)
† = b†jbi (14)

the Hamiltonian is Hermitian (with α1, α2, β1, β2 ∈ R).
Moreover, it has to be invariant under the TR operation:
H̃ = H. This could be realized by postulating one of the
three following transformation rules:

R1: invariance of the Boson operators (i = 1, 2, 3)

˜
b†i = b†i (or equivalently b̃i = bi) (15)

R2: invariance of the weight generators (i = 1, 2, 3)

b̃†ibi = b†ibi (16)

R3: invariance of the Casimir operators

Ñ = N (17)

ñ = n (18)

Each of them implies that H̃ = H.

The point we want to make is that the physical condi-
tions that are involved in the construction of the algebraic
model, lead directly to R3, but not necessarily to R1 or R2.

We have that R1 ⇒ R2 ⇒ R3.
We note that relations (17, 18) imply that Ñ3 = N3.
With R3, the operator N3 plays a particular role. In

fact R3 is well-adapted to the chain of groups (12).
Studying a system for which a suitable chain of groups

consists only of U(3), R1 and R2 could be left unchanged,
while R3 reduces to (17).

The rules R1 and R2 cannot be imposed a priori. In
order to see that, we consider the following operators:

B1 =
1
√

2
(b1 − ib2), B2 =

1
√

2
(b1 + ib2), B3 = b3

B†1 =
1
√

2
(b†1 + ib†2), B†2 =

1
√

2
(b†1 − ib

†
2), B†3 = b†3.

(19)

They satisfy the same commutation relations [Bi,B
†
j ] =

δij , (i, j = 1, 2, 3). We can now interpret the operators

B†iBj as generators of a U(3) group. We could invert (19)

and from the B†i , Bj postulate the same transformation

rules as we did for b†i , bj . In this way, we can build a
Hamiltonian adapted to the chain U(3) ⊃ U(2). On the
other hand, from the expression (13) and reversing the
relations (19), it is possible to deduce the transformed
Hamiltonian, which can be written as:

H′ = α1N
′ + α2N′

2
+ β1n

′ + β2n
′2 (20)

where N′ = B†1B1+B†2B2+B†3B3 and n′ = B†1B1+B†2B2.

H′ is Hermitian and satisfies H̃′ = H′. However, from

R1, one does not get similar relations for the B†i , Bj :

B̃1 = B2, B̃2 = B1, B̃3 = B3 (21)

(and the related Hermitian conjugate expressions).
It follows that the Hamiltonian H′ is invariant without

verifying a rule of type R1.
Now from R2, we obtain for the new weight generators:

B̃†1B1 = B†2B2, B̃†2B2 = B†1B1, B̃†3B3 = B†3B3.

(22)

Once again, H′ is invariant without verifying a rule of
type R2.

In conclusion, it is only with the rule R3 that the two
Hamiltonians verify the same property of invariance of the
Casimir operators under the TR symmetry.

Having shown that R1⇒ R2⇒ R3, and taking into ac-
count the necessity of invariance of the Casimir operators,
we can conclude that we have to define a more general
expression than R1 for the transformation of the Boson

operators b†i , bj . This will give us the expression of the
transformed generators under the TR operation.
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Another, even simpler example that shows that the
rules R1, R2 or R3 cannot be imposed a priori without a
physical interpretation is given by the chains

(I) : U(2) ⊃ U(1)

and
(II) : U(2) ⊃ SU(2) ⊃ SO(2).

The first one (I) is chosen to describe a one-dimensional
vibrational degree of freedom (e.g. vibration of a diatomic
molecule), while the second one (II) is taken to describe a
rotational degree of freedom (orbital angular momentum).
The generators of U(2) can be represented by

E12 = b†1b2

E11 = b†1b1 ≡ N1 ≡ n

E21 = b†2b1

E22 = b†2b2 ≡ N2 ≡ N− n.

To describe angular momentum, the generators of U(2)
can be represented by

N = E22 + E11

Jz = (E22 −E11)/2 = N/2− n

J− = E12

J+ = E21.

Thus, if we impose R3, which is well adapted for the vi-
brational chain (I) we would obtain

C ˜1(U(2)) = Ñ = C1(U(2)) = N

and

C ˜1(U(1)) = ñ = C1(U(1)) = n

that is:
J̃z = Jz.

For the second chain, in order to obtain the TR transfor-
mation adapted to angular momentum, we require:

J̃z = −Jz,

J̃+ = −J−.

This can be obtained by choosing

b̃1 = −b2, b̃2 = b1.

We notice that this transformation satisfies θ2 = −1I

when acting upon the boson operators (
˜̃
bj = −bj), but

θ2 = 1I acting on the generators (
˜̃
Eij = Eij), which are

the actual physical observables. The conclusion from these
examples is that the realization of the TR transformation
cannot be defined only from the abstract algebraic prop-
erties of the chain. One needs to use the physical interpre-
tation attributed to the operators.

In this paper we will discuss the case of vibrational
modes described by U(5). We will attribute the physical
interpretation of the operators through geometrical sym-
metry properties of the molecule.

2 Hypothesis and conditions
on basic operators

We consider representations of the TR operation, on the
algebra of Boson operators, as linear antiunitary transfor-
mations. A creation operator can be transformed into a
linear combination of all other annihilation and creation
operators of the unitary group U(5), namely (i = 1, ..., 5):

˜
b†i =

5∑
j=1

Aijbj +
5∑
k=1

Bikb
†
k. (23)

From the relation (10) we can derive (l = 1, ..., 5):

b̃l =
5∑
p=1

A∗lpb
†
p +

5∑
q=1

B∗lqbq. (24)

Taking into account the invariance condition on the irreps
in the chain (1), this relation can be further reduced as
follows.

2.1 First condition

We start by examining the operator N =
5∑
i=1

Ni. This

operator is diagonal in the initial basis and consequently
in the symmetrized basis too, with eigenvalue N . This
eigenvalue is nothing but the label denoting the irrep
[N, 0, 0, 0, 0] of U(5). It can be related to the number of
bound states (given by the well-known Weyl formula [18])
associated with our vibrational problem. Under the TR
symmetry, we must stay within the irrep containing all
the physical states of our system, that is:

Ñ ≡ N.

With the help of equations (23, 24), the latter expression
becomes:

Ñ =

5∑
i=1

b̃†ibi =

5∑
i=1

˜
b†i b̃i

=

5∑
i=1

{(
5∑
j=1

Aijbj+

5∑
k=1

Bikb
†
k

)(
5∑
p=1

A∗ipb
†
p+

5∑
q=1

B∗iqbq

)}

=
∑
ijp

{
(AijA

∗
ip +BipB

∗
ij)b

†
pbj +AijA

∗
ipδjp

+AijB
∗
ipbjbp +BijA

∗
ipb
†
jb
†
p

}
≡

5∑
i=1

b†ibi. (25)

We can deduce that:∑
ijp

AijA
∗
ipδjp = 0 that is Aij = 0 ∀ i, j. (26)

Thus, relation (25) is reduced to:

Ñ =
5∑
i=1

˜
b†i b̃i =

∑
ijp

BipB
∗
ij b†pbj ≡

5∑
i=1

b†ibi.

It follows that the matrix B is a (5× 5) unitary matrix.



C. Leroy et al.: Algebraic time-reversal operation 261

2.2 Second condition

The second condition is given by relation (9), applied to
a creation (or annihilation) operator:

˜̃
b†i ≡ b†i (or

˜̃
bi ≡ bi). (27)

From equations (23, 26), we have that:

˜
b†i =

5∑
k=1

Bikb
†
k which means that

˜̃
b†i =

5∑
k=1

B∗ik
˜
b†k.

So equation (27) can now be expressed as:

˜̃
b†i =

∑
kj

B∗ikBkjb
†
j ≡ b†i .

This implies that
∑
k

B∗ikBkj = δij , hence B is a (5 × 5)

symmetric unitary matrix.

2.3 Third condition

For tetrahedral molecules, the molecular symmetry group
Td is isomorphic to the permutation group S(4).

In other words, each symmetry R of Td produces a
permutation of the indices i = 1, ..., 4 numbering the four

bonds. As a generator b†ibj (i, j = 1, ..., 4) is interpreted
as the operator transferring one quantum from bond j to
bond i, one can easily determine how such an operator
transforms under R ∈ S(4) ≈ Td ⊂ O(3). With this con-
dition, we only need to examine the relations imposed on
the Bij for any symmetry operation of S(4). The reference
configuration chosen for our XY4 system is given in Fig-
ure 1 of [19], where the bond i corresponds to the atom Yi
labeled by the index i. In order to illustrate the results ob-
tained, we give hereafter an example in a particular case.

Under the C3(1, 1, 1) rotation, the four bonds trans-
form as: (4) (132). In this case, we get the following re-
lations: B11 = B33, B12 = B13 = B23, B14 = B34, B15 =
B35. Repeating the same procedure for all symmetry
operations of S(4), we deduce that:

Bii = α (i = 1, ..., 4); Bij = β (i 6= j = 1, ..., 4) (28)

Bi5 = δ (i = 1, ..., 4). (29)

We will denote B55 = γ.

2.4 Fourth condition

U(4) is the degeneracy group for a system of 4 equiva-
lent oscillators. The irreps [n, 0, 0, 0] of U(4) included in
the irrep [N, 0, 0, 0, 0] of U(5) are given by the usual be-
tweenness conditions [12,20]:

0 ≤ n ≤ N.

Moreover, we can verify that

dim [n, 0, 0, 0] =
(n+ 3)!

n! 3!
= Cnn+4−1

corresponds to the degeneracy of a 4-dimensional oscilla-
tor in the n-state. The number n is the eigenvalue of the

operator n =
4∑
i=1

Ni, which is one of the building blocks

of the Hamiltonian expansion (of type (13)), and can thus
be interpreted as the energy of a 4-dimensional isotropic
harmonic oscillator. As in Section 2.1, n can be seen as the
label denoting the irrep [n, 0, 0, 0] of U(4). Consequently,
we require that the TR transformation cannot transform
a state n to another state n′ with different energy. This
gives:

ñ ≡ n that is Ñ− Ñ5 ≡N−N5 or Ñ5 ≡N5.

Developing this expression, and taking into account the
relations (29), we find that δ = 0.

2.5 Diagonalization of matrix B

Up to now, we have not made explicit the unitarity of
matrix B. The usual and simplest way to express this
property consists in diagonalizing B, which gives:

P−1BP = D =


α− β

α− β 0
α− β

0 α+ 3β
γ



with P =
1

2


1 − 1 1 1 0

− 1 1 1 1 0
1 1 − 1 1 0

− 1 − 1 − 1 1 0
0 0 0 0 2

 ·
P and B being two unitary matrices, this implies that D
has the following form:

D =


eiω

eiω 0
eiω

0 eiω
′

eiω
′′


with ω, ω′, ω′′ ∈ R. From this we can easily deduce the
matrix B:

B = PDP−1 =

1

4


3eiω + eiω

′
eiω
′
− eiω eiω

′
− eiω eiω

′
− eiω 0

eiω
′
− eiω 3eiω + eiω

′
eiω
′
− eiω eiω

′
− eiω 0

eiω
′
− eiω eiω

′
− eiω 3eiω + eiω

′
eiω
′
− eiω 0

eiω
′

− eiω eiω
′

− eiω eiω
′

− eiω 3eiω + eiω
′

0

0 0 0 0 4eiω
′′

 ·
(30)
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Table 1. Matrix representation of K(4) for the generators (1 2); (2 3); (3 4) of S(4) (0 ≤ αi < 2π i = 1, ..., 4).

D(R) ≡ D(R1R2)(R ∈ K(4)) D(R1) (R1 ∈ A(4)) × D(R2) (R2 ∈ S(4))


eiα1 0 0 0

0 0 eiα2 0

0 eiα3 0 0

0 0 0 eiα4




eiα1 0 0 0

0 eiα2 0 0

0 0 eiα3 0

0 0 0 eiα4

 ×


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



eiα1 0 0 0

0 eiα2 0 0

0 0 0 eiα3

0 0 eiα4 0




eiα1 0 0 0

0 eiα2 0 0

0 0 eiα3 0

0 0 0 eiα4

 ×


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




0 eiα1 0 0

eiα2 0 0 0

0 0 eiα3 0

0 0 0 eiα4




eiα1 0 0 0

0 eiα2 0 0

0 0 eiα3 0

0 0 0 eiα4

 ×


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



2.6 Fifth condition

We can now concentrate our attention on K(4). Initially
the group K(n) (n ∈ N∗) was introduced by Kramer and
Moshinsky [21,22] in the study of a n-nucleon system. This
group is obtained as the semi-direct product A(n) ∧ S(n)
where A(n) is the group of the n × n unitary diagonal
matrices and S(n) the permutation group of n objects.

In our case, there is a convenient way [23] to write the
operations R = R1R2 of K(4) in matrix form; D(R) is
the product D(R1)D(R2) where D(R1) is a 4-dimensional
diagonal matrix, function of 4 real parameters αi, and
D(R2) is a matrix in the natural representation of S(4).
An illustration of this matrix representation is given in
Table 1. From this table, it appears clearly that K(4) is a
subgroup of U(4).

The irreps of K(4) are given in [7]. They can be de-
noted by

(n1 n2 n3 n4, {fw})

with n1, n2, n3, n4 ∈ N. w = (n1 n2 n3 n4) represents an
irrep of A(4) and fw a product of irreps of subgroups of
S(4) whose direct sum equals S(4).

It must be noted that

(nπ(1)nπ(2)nπ(3)nπ(4), {fw}) = (n1 n2 n3 n4, {fw}),

∀π ∈ S (4)

i.e., it does not matter in which order the quantum num-
bers n1 n2 n3 n4 appear. From this, we can deduce that
K(4) admits an infinite number of irreps just as there is
an infinite number of non-equivalent sets {ni}i=1,...,4.

For a given value n = n1 + n2 + n3 + n4 it is possible
to classify the different types of irreps of K(4). This is

given in [7]. The irreps of K(4) which can appear in the
subduction of the irrep [n, 0, 0, 0] of U(4) are:

(n1 n1 n1 n1, {4000}),

(n1 n1 n1 n2, {300}{1}),

(n1 n1 n2 n2, {20}{20}),

(n1 n1 n2 n3, {20}{1}{1}),

(n1 n2 n3 n4, {1}{1}{1}{1}).

It was shown in [7] that these irreps are exactly those
which identify the states of a local tetrahedral molecule.

Invariant operators are associated to these irreps. They
enable the identification of the different local states. The
way of constructing them is developed in [7]. Their expres-
sions in terms of Bosonic operators are:

J1(K(4)) = N1 + N2 + N3 + N4,

J2(K(4)) = N1
2 + N2

2 + N3
2 + N4

2,

J3(K(4)) = N1
3 + N2

3 + N3
3 + N4

3,

J4(K(4)) = N1
4 + N2

4 + N3
4 + N4

4.

These operators are functions of the weight operators Ni

(i = 1, ..., 4) only and consequently diagonal in the sym-
metrized basis.

As K(4) provides us with labels which identify the
different local states, we now demand that these irreps re-
main invariant under the TR symmetry, or in other words,
that one cannot go from a local state to another (for the
same value of n) only by this time symmetry. This gives:

J̃i(K(4)) ≡ Ji(K(4)) with i = 1, ..., 4. (31)

The operator J1(K(4)) is the linear algebraic invariant of
U(4), which we already examined in Section 2.4. Under the
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TR operation (30), the quadratic invariant J2(K(4)) =
N2

1 + N2
2 + N2

3 + N2
4 becomes:

4∑
i=1

Ñ2
i = (|α|4 + 3|β|4)

4∑
i=1

N2
i

+
∑

(i=j=p=q)
excluded

Ci,j,p,q(α, β) b†ibjb
†
pbq.

The condition (31), for i = 2, leads to two new relations:

(|α|4 + 3|β|4) = 1 (32)

Ci,j,p,q(α, β) = 0 (33)

∀ i, j, p, q included in the sum mentioned above.
Equation (32) gives the unique solution

ω′ = ω mod[2π].

From this it is easy to verify that condition (33) is auto-
matically fulfilled.

We can thus write:

B =


eiω

eiω 0
eiω

0 eiω

eiω
′′

 ·
The result of the TR operation can now be expressed for
the U(5) generators (i, j, k = 1, ..., 4) as:

b̃†ibj = b†ibj , b̃†5b5 = b†5b5,

b̃†kb5 = ei(ω−ω
′′)b†kb5, b̃†5bk = ei(ω

′′−ω)b†5bk.

(34)

As the invariants of K(4) depend only on the generators of
U(4) (more precisely on the weight operators of U(4)), the
first equality in relations (34) implies that all the algebraic
invariants of K(4) are invariant under the TR operation,
that is, the conditions (31) are all fulfilled.

3 TR symmetry applied on a G-Z ket

3.1 Construction of a real basis

Naturally the question which arises now concerns the val-
ues of ω and ω′′. More precisely, the Hamiltonian describ-
ing the four-bond system we are studying is not (and does
not need to be) invariant under the symmetry operations
of U(5), (which is the dynamic noninvariance group of the
chain of groups (1)).

Under Hermitian conjugation and TR operation, the

operators b†kb5 and b†5bk (k = 1, ..., 4) transform as:

(b†kb5)† = b†5bk, b̃†kb5 = ei(ω−ω
′′)b†kb5,

(b†5bk)† = b†kb5, b̃†5bk = ei(ω
′′−ω)b†5bk.

(35)

Thus, if we search a Hermitian and totally symmetric com-

bination of b†5bk and b†kb5 fulfilling the condition of TR
invariance, that is an operator which can appear in the
Hamiltonian, we find:

O =
1

2

4∑
k=1

(ei
ω−ω′′

2 b†kb5 + e−i
ω−ω′′

2 b†5bk).

As the parameters ω and ω′′ are involved in the expres-
sion of the operator O, it is necessary to calculate the
matrix elements of this operator. We have to reformulate
the basis of our system to obtain what is called a real basis
[24,25]. Let us first examine the kets of our system. A ba-
sis adapted to the chain of groups (1) is given in [7]. It is
built from:

|n1 n2 n3 n4 n5〉 =
1

√
n1!n2!n3!n4!n5!

× b+n1
1 b+n2

2 b+n3
3 b+n4

4 b+n5
5 |0 0 0 0 0〉 (36)

with N =
5∑
i=1

ni, through an orthogonal transformation

(i.e. all coefficients are real). From [24,25], we can easily
transform the ket (36) in order to obtain a real basis.
We briefly recall how to obtain it.

If |ψ〉 is an element of the basis, then under TR sym-
metry, we may write:

|̃ψ〉 = θ|ψ〉.

Then, we can build:

|ψ〉R = λ|ψ〉+ λ∗ |̃ψ〉

which is now invariant under the TR operation for all
λ 6= 0. A convenient choice of λ enables us to normalize:

R〈ψ|ψ〉R = 1. (37)

In our case, up to a phase factor common to all kets, the
real basis is simply deduced from the initial basis as:

|n1n2n3n4n5〉R = ei
n(ω−ω′′)

2 |n1n2n3n4n5〉 (38)

with n = n1 + n2 + n3 + n4.

3.2 Matrix elements of reorganized generators

With respect to a real basis, the Hamiltonian matrix has
real elements [24–26].

A proof can be sketched as follows:

θ|ψ〉R = |ψ〉R for every real ket |ψ〉R, (α)

1I |ψ〉R = θ†θ|ψ〉R
(α)
= θ†|ψ〉R = |ψ〉R, (β)

R〈ϕ|ψ〉R = R〈ϕ|(θ|ψ〉R) = R〈ψ|(θ
†|ϕ〉R)

(β)
= R〈ψ|ϕ〉R ∈ R, (γ)

θ(H|ψ〉R) = H(θ|ψ〉R) = H|ψ〉R, i .e. H|ψ〉R = |ϕ〉R,
(δ)

Hij = R〈ψi|H|ψj〉R
(δ)
= R〈ψi|ϕ〉R

(γ)
∈ R.
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The matrix elements of all the operators built on the gen-
erators of the degeneracy group U(4)

R〈n1...n
′
i...n

′
j ...n5|b

†
ibj |n1...ni...nj ...n5〉R

=
√
ni + 1

√
njδn′i,ni+1 δn′j ,nj−1 (i, j = 1, ..., 4) (39)

are the same as those in the initial basis.
However, the matrix elements of the generators bib

†
5

and b†5bi (i = 1, ..., 4)

R〈n1...n
′
i...n5 − 1|b†ib5|n1...ni...n5〉R

= e−i
n(ω−ω′′)

2
√
ni + 1

√
n5 δn′i,ni+1 (i = 1, ..., 4) (40)

R〈n1...n
′
i...n5 + 1|b†5bi|n1...ni...n5〉R

= ei
n(ω−ω′′)

2
√
ni
√
n5 + 1 δn′i,ni−1 (i = 1, ..., 4) (41)

depend on the parameters ω and ω′′.
Thus we can build reorganized generators (i = 1, ..., 4)

b
†
ib5 = ei

ω−ω′′

2 b†ib5, b
†
5bi = e−i

ω−ω′′

2 b†5bi

whose matrix elements in the real basis are independent
of ω and ω′′:

R〈n1...n
′
i...n5 − 1|b†ib5|n1...ni...n5〉R

=
√
ni + 1

√
n5 δn′i,ni+1 (i = 1, ..., 4) (42)

R〈n1...n
′
i...n5 + 1|b†5bi|n1...ni...n5〉R

=
√
ni
√
n5 + 1 δn′i,ni−1 (i = 1, ..., 4) (43)

Moreover, these matrix elements are exactly the same as

those of the generators b†ib5 and b†5bi (i = 1, ..., 4) in the
initial basis.

4 Discussion

The conclusion of this analysis is that no new condition
appears for the values of ω and ω′′. One could set ω′′ = ω
for simplicity, but there is no physical or mathematical
argument to impose it.

Moreover, choosing ω′′ = π/2 or ω′′ = 2π leads

(respectively) to b̃†5 = ib†5 or b̃†5 = b†5, thus the dynamical
realization of that operator depends on the value of ω′′

explicitly and can only be more specified by a significant

new physical interpretation: b†5, b5 can be interpreted as

interaction operators with other degrees of freedom of the
molecular system (bending modes, Fermi interaction, ro-
tation, ...), or as interaction operators with an external
excitation (electrical field, ...) through the dipole operator
[16,27] or even as effective operators taking into account
all the interactions of the stretching modes with all other
degrees of freedom.

Furthermore, as shown in the simple example (U(3) ⊃
U(2)) of the introduction, R3 is verified while R1 and R2
are not. However, ω′′ = ω 6= 2π would imply R2, ω′′ =
ω = 2π would imply R1 (and R2) without changing the
Hamiltonian matrix.

Finally, another interesting result can be deduced from
this paper.

By means of the projection operator (4) P
(C)
σ , and

with the physical association of the operators bi and b†i
(i = 1, ..., 4) to the ith bond in the molecule, it is easy to
symmetrize the generators

b†ibj ,b
†
ib5,b

†
5bi i, j = 1, ..., 4 (44)

in the symmetry group of the molecule. We may note

Y
r(C)
σ these symmetrized operators constructed with the

reorganized operators (44), where the notation r, C, σ has
been explained in the introduction (see equation (2)). It

must be noticed that these symmetrized operators Y
r(C)
σ

are not necessarily Hermitian or TR invariant, but their
matrix elements are independent of ω and ω′′. Now using
the Wigner-Eckart theorem and knowing the matrix ele-
ments (39), (42), (43), we can deduce the matrix elements

of the operators Y
r(C)
σ

R〈n′1n
′
2n
′
3n
′
4n
′
5, r
′C′σ′|Yr(C)

σ |n′′1n
′′
2n
′′
3n
′′
4n
′′
5 , r
′′C′′σ′′〉R

= [C′]−1/2F
(CC′′)σ′

σσ′′(C′)

×R〈n′1n
′
2n
′
3n
′
4n
′
5, r
′C′||Yr(C)||n′′1n

′′
2n
′′
3n
′′
4n
′′
5 , r
′′C′′〉R

(45)

where R〈n′1n
′
2n
′
3n
′
4n
′
5, r
′C′||Yr(C)||n′′1n

′′
2n
′′
3n
′′
4n
′′
5 , r
′′C′′〉R

denotes the reduced matrix element of Y
r(C)
σ , and

F
(CC′′)σ′

σσ′′(C′) represents a tetrahedral coupling coefficient. Of

course, this reduced matrix element does not depend on
the parameters ω and ω′′.

As all physical operators (Hamiltonian, dipole momen-
tum, ...) can be expanded as a sum of product of sym-

metrized operators Y
r(C)
σ , using the internal coupling re-

lation, one can easily obtained the reduced matrix element
of this product; namely in the case of a product of two op-
erators

see equation (46) below

R〈n
′
1n
′
2n
′
3n
′
4n
′
5, r
′C′||(Yn1(C1)×Yn2(C2))(C3)||n1n2n3n4n5, rC〉R

=
√

[C3](−1)C
′+C+C1+C2

∑
n′′1 ,n

′′
2 ,n
′′
3 ,n
′′
4 ,n
′′
5 ,r
′′,C′′

R〈n
′
1n
′
2n
′
3n
′
4n
′
5, r
′C′||Yn1(C1)||n′′1n

′′
2n
′′
3n
′′
4n
′′
5 , r
′′C′′〉R

× R〈n
′′
1n
′′
2n
′′
3n
′′
4n
′′
5 , r
′′C′′||Yn2(C2)||n1n2n3n4n5, rC〉R

{
C1 C2 C3

C C′ C′′

}
(46)
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with

{
C1 C2 C3

C C′ C′′

}
denoted a 6C symbol.

Consequently, not only for the Hamiltonian but the
matrix elements of any operator built through this for-
malism do not depend on the parameters ω and ω′′.

5 Conclusion

Within a purely algebraic frame, we have determined the
general form of the TR operation which is compatible
with symmetries of XY4 molecules. We analyzed the
action of TR operation on particular operators which are
algebraic invariants of continuous and semi-continuous
Lie groups. The basic constraint on the TR operation
is the requirement that an irrep must stay stable under
the transformation. We have deduced the TR behavior
of all the quantities involved in our formalism, not only
the generators of the dynamical group U(5), but also of
the Boson operators. The transformation laws depend
on two parameters which may be fixed by the physical
interpretation of each particular model.
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